為民族(zú)工業造"芯"
草莓视频在线无限看資訊|國際知名刊物介紹草莓视频在线无限看地熱井口模塊電站技術及其(qí)成就
發布日期:2024-09-05

   編者按:日前,國際電力行業知名刊物《Power》刊登題為“模塊化發電廠正在提高肯尼亞地熱效率”的文章,向全球介紹我集團首(shǒu)創的地(dì)熱井(jǐng)口電站技術及其成就(jiù)。這是繼新華社、《人民日報》等中國央媒介紹草莓视频在线无限看在肯尼亞取得的成就之後,又一個國際級媒體的推介。

   《Power Magazine》在全球(qiú)電力行業具有顯著的(de)影響力。作為全球最古老的能(néng)源行業期刊之一,自1882年創刊以來,已成為電力行業內的重要信息來源和(hé)行(háng)業標準。其影響力既源於(yú)權威性和曆史性,還因為其擁有廣泛的受眾群(qún)體,讀者涵蓋(gài)了全球(qiú)電力行業專業人士,包括電力工程師(shī)、運營經(jīng)理、技術專家、決策者和(hé)企(qǐ)業高管,它(tā)通過提供深入的技術分(fèn)析、案例研究和行業新聞(wén),幫助專(zhuān)業(yè)人(rén)士做出更好的決策和理解行業動態。《Power Magazine》在全球電力行業扮演重要的角色,既是信息傳播(bō)的重要渠道,也是行業趨勢和(hé)技術發展的風向標(biāo),該刊物宣介草莓视频在线无限看地熱井(jǐng)口模(mó)塊(kuài)電站技術標誌著我集團擁(yōng)有自主知識產權的核心技術得到(dào)業內主流媒體的認同,也料將(jiāng)極大地推動草莓视频在线无限看技術在全球的應用。

   下麵是本編輯部轉發的新聞鏈接(jiē)和轉載文(wén)章的中英文對照文本(běn),以饗(xiǎng)讀者。

   原文鏈接:https://www.powermag.com/a-modular-power-plant-is-steaming-up-kenyas-geothermal-efficiency/

A Modular Power Plant Is Steaming Up Kenya's Geothermal Efficiency



        Sosian Menegai during the commissioning phase. Courtesy: Kaishan Group

        Sosian Menengai Geothermal Power, Kenya’s newest geothermal power plant, is powered by modular technology that maximizes efficiency, reduces costs, and enhances scalability.

        Kenya’s scenic Rift Valley region is a literal hotbed of geothermal potential. Part of the vast East African Rift Valley System (EARS), a 6,400-kilometer (km) tectonic divergence that is cleaving the African continent into two plates, Kenya’s Rift Valley forms a vertical corridor of intensive faulting and volcanic activity, hot springs, fumaroles, and sulfur-oozing fissures. But while the country began geothermal exploration for power development in the 1950s, most of its investments have been focused on the Olkaria region situated within Hell’s Gate National Park near the flamingo-flecked Lake Naivasha in Nakuru County. Five of six geothermal power stations in Olkaria are owned by KenGen (with a combined capacity of 799 MW), while Nevada-based Ormat Technologies owns a 150-MW plant. Olkaria plants in 2023 provided nearly 45% of Kenya’s total generation, a sizeable contribution to the East African powerhouse’s meager 3.3-GW installed capacity.

        In 2008, the Geothermal Development Co. (GDC), a state-owned special-purpose vehicle tasked with accelerating the nation’s geothermal resource development, expanded its focus to the Menengai region just north of Olkaria, at the site of a massive shield volcano with one of the biggest calderas in the world. While GDC says the Menengai complex harbors a potential of 1,600 MW, its long-term goal is to develop 465 MW of geothermal steam equivalent.

        In 2013, it took the first step to competitively award the first three initial 35-MW power projects at the complex to three independent power producers (IPPs): Orpower 22 (a former subsidiary of New York firm Symbion now owned by China’s Kaishan Group), South African-based Quantum Power East Africa (now majority owned by UK firm Globeleq), and Nairobi-headquartered Sosian Energy. In August 2023, the first of these projects—Menengai III, now formally known as the Sosian Menengai Geothermal Power—wrapped up a 16-month construction timeframe and began delivering first power to the grid.


Map showing locations of geothermal area along the Kenyan Rift Valley. Courtesy: KenGen

A Technology Breakthrough

        Sosian’s condensed timeframe is especially stunning given that traditional geothermal development can exceed seven years. This is owing in part to a complex process that involves drilling and testing multiple wells, selecting a centralized power plant locations, ordering steam turbines, and constructing extensive steam collection and reinjection systems. The traditional approach is also ridden with risks, including significant delays and inefficiencies, such as energy losses from steam pressure drops, thermal losses over long distances, and the underutilization of wells with varying pressures.

        Sosian, to some measure, had the benefit of the GDC’s public-private partnership model for developing Menengai, under which the GDC assumes upfront risks of geothermal development. The state company has also notably set out to develop the field in five phases, starting with a 105-MW “steam sales” model, where it supplies steam from drilled wells to the power plants via a 25-km steam gathering and piping system. As of 2023, GDC had drilled 53 wells with a potential of 169 MW.

        However, the power plant’s success can also be attributed to a distinctive new geothermal development process introduced by China’s Kaishan Group. Dr. Tang Yan, general manager of Kaishan Group, recalled realizing the need for a dramatic shift at a 2015 geothermal conference in Melbourne, Australia, where experts discussed the pitfalls of conventional methods. “I said, ‘Why don’t you put a power plant on the wellhead and do it phase by phase?’ ” he recounted.

Overcoming Traditional Challenges

        While the approach proposed to support incremental power production from the start while providing revenue to support future project expansion, Yan learned no technology to support the approach was commercially available. Kaishan, which had then already begun its transition from a giant Shanghai-headquartered air compressor maker to a diversified global company, jumped into action to leverage its 2012-developed Organic Rankine Cycle (ORC) expander and screw steam expander technologies.

        The technologies—originally developed for waste heat recovery from refineries and steel mills—allowed Kaishan to optimize geothermal power generation by maximizing energy output from varying well conditions, reducing inefficiencies, and enabling the development of four types of decentralized, modular power plants that are quicker to deploy and more adaptable to different geothermal fields, Yan told POWER. “These modular power plants include the steam screw expander modular power plants, the steam ORC modular power plants, the brine ORC modular power plants, and the steam and brine dual resource modular power plants,” he explained.

        Steam screw expanders are specifically designed to handle wet or saturated steam, which is common in geothermal wells, effectively extracting energy from a wider range of well conditions, including wells with high non-condensable gas (NCG) content that may not be suitable for traditional turbines. ORC systems, meanwhile, are adept at converting lower-temperature steam and brine—byproducts that would otherwise go to waste—into additional electricity, Yan said.

        In addition, Kaishan’s modular plants can be used to form hybrid cycles or thermal systems to meet any production well conditions, maximize their power output, and eliminate low-head pressure (WHP) wasted wells or idling wells. Because the technologies can be adapted to specific geothermal resource conditions at different project sites, they can be tailored to provide stellar efficiency, he said. “We can improve the well thermal efficiency of, for example, medium enthalpy wells, to up to 18% and 19%,” he said. That compares to only 8% to 12% for traditional centralized power plants that only use single-flash steam, he noted.


        he 35-MWe Sosian Menengai Geothermal Power plant was commissioned in August 2023. The plant uses two Kaishan geothermal steam counterpressure screw expanders, which discharge their exhausts into three Organic Rankine Cycle units. Courtesy: Kaishan Group

A Competitive Edge for New Geothermal Power

        Kaishan quickly expanded the niche technology into a lucrative business. Since it put online the first of four phases of the 240-MW Sorik Marapi Geothermal Project in Indonesia in 2018, it has built the 10-MW Sokoria Geothermal, also in Indonesia, alongside projects in Turkey, the U.S., and Hungary. At Sosian, Kaishan’s first project in Kenya, the company served as the engineering, procurement, and construction (EPC) contractor.

        According to Yan, Kaishan’s cost-effective price point proved a crucial selection advantage. Kaishan’s EPC contract is valued at $65 million, compared to a $108 million EPC contract recently awarded for Menengai II, one of the region’s three equally sized IPP projects. The price difference is rooted in the technology selection, Yan explained. While Sosian’s 35-MW project was designed as a centralized power plant, it is powered by two steam screw expanders and three wet steam ORC modular power plants.

        However, GDC’s steam contains 3.3% NCG—which represents a “huge percentage,” he said. If Sosian used traditional steam turbines, they would need to expand steam at 6 bar absolute and then consume more then 30 tons of steam per hour to remove NCG using steam injectors and vacuum pumps. Instead, Sosian employs steam screw expanders and a bottom cycle to handle the saturated steam discharge, reducing the steam to atmospheric levels throughout the entire process while eliminating the parasitic power typically consumed by vacuum systems.

        “The overall efficiency compared to a traditional steam turbine is a huge game changer for this site,” Yan said. “The project only needed a guarantee of 33.25 MW, and the target was 35 MW, but we’re actually generating 37 MW.” At the same time, the project doesn’t need to purchase the extra 10% of steam for a steam injector, putting less of a burden on the GDC, he said.

A Solution for Idled Wells

        The modularity of the system also proved beneficial to speed up construction and, crucially, to overcome supply chain and project management challenges posed by the COVID pandemic, Yan said. Kaishan typically assembles the modules and conducts component testing in a factory setting over six to nine months, he said. “And then, when we ship to the site, usually it takes a very short time to put them together, and you don’t need to do any welding on the power modules,” he added. “That’s sometimes where quality control can be a challenge,” he noted.

        The success of the Sosian Menegai project has so far sparked significant interest in Kenya’s geothermal industry, Yan said. A key reason is that Kenya has a lot of wells, and an estimated 25% to 30% of those wells may not be supported by a steam collection system, which is needed by centralized steam turbines. “They call them idled wells or wasted wells, and they sit there and do nothing,” even if it was costly to drill them, he said. “But our technology doesn’t have that limitation because we can use any good pressure, whether they can produce brine or steam.”

Sonal Patel is a POWER senior editor (@sonalcpatel, @POWERmagazine).

中文翻譯稿

模塊化發電廠正在提高肯尼亞地熱(rè)效率




調試階段的(de) Sosian Menegai。圖片來源:草莓视频在线无限看集團

肯尼亞最新的地熱發電廠 Sosian Menengai 地熱發電廠采用模塊化技(jì)術,可最大限度提高效率、降低成本並增強可(kě)擴展性。

肯尼亞風景(jǐng)秀麗的裂(liè)穀地區是地熱資源的寶庫。肯尼(ní)亞(yà)裂穀是(shì)廣闊的東非大裂穀係統 (EARS) 的一部(bù)分,東非大裂穀(gǔ)係統(tǒng)是一個長達 6,400 公裏的(de)地(dì)質構造分叉(chā),將非洲大陸一分為二。肯尼亞裂穀形成了一(yī)個垂直走廊,其中有密集的(de)斷層和火(huǒ)山活動、溫泉、噴氣孔和硫磺滲出的裂縫。盡管肯尼亞在 20 世紀 50 年代就開始進行地熱勘探以開發電力,但(dàn)其大部分投資都集中在位於地獄之門國(guó)家公園內的奧爾卡裏亞地(dì)區,該(gāi)公園靠近納庫魯縣火烈鳥點綴的納瓦(wǎ)沙湖。奧爾卡裏亞的六座地熱發電站(zhàn)中有五座歸 KenGen 所有(總容量為 799 兆瓦(wǎ)),而總部位於(yú)內華達州的 Ormat Technologies擁有一座 150 兆(zhào)瓦的發電站。到 2023 年,奧爾卡裏亞 (Olkaria) 電廠將(jiāng)提(tí)供肯尼亞近 45% 的(de)總發電量,為這(zhè)個(gè)東非強國僅有的 3.3 吉瓦的裝機容(róng)量做出了巨大貢獻。

2008 年,地(dì)熱開發公司 (GDC) 將重點擴大到奧爾卡裏亞以北的梅嫩蓋地區,該地區是一座巨大的(de)盾形火山,擁有世界上最大的火山口之一。地熱開發公司是一(yī)家國(guó)有特殊目的公司,其任務是加速該國的(de)地熱資源開發。GDC 表示,梅嫩蓋綜合體蘊藏著 1,600 兆瓦的地(dì)熱潛力,但其長期目標是開發 465 兆瓦(wǎ)的地熱蒸汽當量(liàng)。

2013 年,該集團(tuán)邁出了第一步,通過競爭方式將該綜合體中的前三個 35 兆瓦發電項目授予三家獨立電力供應商 (IPP):Orpower 22(前身為(wéi)紐約 Symbion 公(gōng)司的子公司,現歸中(zhōng)國草莓视频在线无限看集團所有)、總部位(wèi)於南非的 Quantum Power East Africa(現由英國公司(sī) Globeleq 控股)和總部位於內羅畢的 Sosian Energy。2023 年 8 月,這些項目中的第一個項目——Menengai III(現正式稱為 Sosian Menengai 地熱發電項目)結束了為期 16 個月的建設工期,並開始向電網輸送第一批(pī)電力。

地圖(tú)顯示了肯尼亞裂穀沿線地熱區的位(wèi)置。圖片來源:KenGen

技術突破

鑒於傳統地熱開發可能要(yào)耗(hào)時超過七年,Sosian 的縮短(duǎn)工期尤其令人震驚。這在一定程(chéng)度上(shàng)歸因於一個複(fù)雜的過(guò)程,包括鑽探和測(cè)試多(duō)個井、選擇集中發電廠位(wèi)置、訂購蒸汽渦輪機以及建造廣泛的蒸汽收集和再注入係統。傳統方(fāng)法也充滿風險,包括嚴重的(de)延誤和效(xiào)率低下,例如蒸汽壓力下降造成(chéng)的能量(liàng)損失、長距離(lí)熱損失以及壓力變化的井的利(lì)用不足。

在某種(zhǒng)程度上,Sosian 受益於 GDC 開(kāi)發 Menengai 的公私合作模式,根據該模式,GDC 承擔地熱開發的前期風險。值(zhí)得注意的是,這(zhè)家國有公司還計劃(huá)分五個階段開發該地熱田,首先采用(yòng) 105 兆瓦的(de)“蒸汽銷售”模式,通過 25 公裏長的蒸汽收集和管道係統(tǒng)將鑽井中的(de)蒸汽供應給發電廠。截至 2023 年,GDC 已鑽探了 53 口井,潛力(lì)為 169 兆瓦。

然而,該發電廠的成功也歸功於中國草莓视频在线无限看集團推出的獨特的新型地(dì)熱開發工(gōng)藝。草莓视频在线无限看集團總經理湯炎博士回憶說,他在 2015 年(nián)澳大利亞墨爾本舉行的地熱會議上意識到需要進行重(chóng)大轉變,當時專家們討論了(le)傳統方法的缺陷。“我說,‘你為什麽不(bú)在井口建一(yī)個發電廠,分階段進行呢?’”他回憶道。

克服傳統挑戰

雖然該方法從一開始就提出支持增量(liàng)發電,同時提供收入以(yǐ)支持未來的項目擴展,但湯炎博士了(le)解到,沒有支(zhī)持該方法的技術可供商業使用。開(kāi)山當(dāng)時已經開始從一家總部位於(yú)上海的大型空(kōng)氣壓縮機製造商轉型為(wéi)一家多元化的(de)全球性(xìng)公司,並立即采(cǎi)取行動,利用其 2012 年開發的有機朗肯循環 (ORC) 膨脹機和螺杆蒸汽膨脹機技術。

湯炎博士告訴《POWER》雜誌,這(zhè)些技術(shù)最初是為回收煉油廠和鋼廠的廢(fèi)熱而開發的,它使草莓视频在线无限看公司能夠(gòu)通過(guò)最大限度地(dì)提高(gāo)不同井況下的能量(liàng)輸出、減少低效率,以及開發四種類型的分(fèn)散式模塊化發電廠來優(yōu)化地熱發電,這些發電廠部署速度更快,更能適應不同的地熱田(tián) “這些模塊化發電廠包括蒸汽螺杆膨脹機模塊化發電(diàn)廠、蒸汽 ORC 模塊化發電廠、鹽水 ORC 模塊化發電廠以及蒸(zhēng)汽(qì)和鹽水雙資源模塊化發電廠,”他解釋說(shuō)。

蒸汽螺杆膨脹機專門設(shè)計用於處理(lǐ)地(dì)熱(rè)井中(zhōng)常見的濕蒸汽或飽和蒸汽,可有效從各種井況中提取能量,包括可能不適合傳統渦輪機的不(bú)凝性氣體 (NCG)含量高的井。與此同時(shí),ORC 係統擅長將低溫蒸汽和鹽水(否則這些副產品將被浪費)轉化(huà)為額外的電能,湯(tāng)炎博士說。

此外,開(kāi)山的模塊(kuài)化電廠可用於形成混合循環或熱力係統,以滿足任何生產井條件,最大(dà)限度地提高其發電量,並消除低壓 (WHP) 浪(làng)費(fèi)井或閑置(zhì)井。他說(shuō),由於這(zhè)些技(jì)術可以適應不同項目地點的特定地熱資源條件,因此可以量身定(dìng)製以提供卓越的(de)效率。他說:“我們可以將(jiāng)中焓井的熱效率提(tí)高到 18% 和 19%。”他指出,相比之下(xià),僅使用單次閃蒸蒸汽的傳統集中式發電廠的熱效率僅為 8% 至(zhì) 12%。

35 MWe 的 Sosian Menengai 地熱發(fā)電廠(chǎng)於 2023 年 8 月投入使用。該電廠使用兩台草莓视频在线无限看地熱蒸汽反壓螺(luó)杆膨(péng)脹機,將廢氣排放到三個有機朗肯循環裝置中(zhōng)。圖片來源:草莓视频在线无限看集團

新地熱發電的競爭優勢

草莓视频在线无限看迅速將這項小眾技術拓展(zhǎn)為一項利潤豐厚的業務。自2018 年在印度尼西(xī)亞投產 240 兆瓦 Sorik Marapi 地熱項目四期工程中的第一期以來,該(gāi)公司已在印度(dù)尼西亞建造了 10 兆瓦的 Sokoria 地熱(rè)項目,此外還在土耳其、美國和匈牙利開展了項目。Sosian是草莓视频在线无限看在肯尼亞的第(dì)一個地熱項目,公司擔任工程、采購和施工 (EPC) 承包商。

湯(tāng)炎博士表示,草莓视频在线无限看電廠具有成本效益的價格點是其關鍵(jiàn)的選擇優勢。草莓视频在线无限看電(diàn)廠的 EPC 合同(tóng)價值 6500 萬(wàn)美元,而該地區三個(gè)同等規模的 IPP 項(xiàng)目(mù)之一 Menengai II 最近獲得的 EPC 合同價值 1.08 億美元。湯炎博(bó)士(shì)解釋說,價格差(chà)異的根源在於技術選擇。雖然 Sosian 的 35 兆瓦項目設計為集中式發電廠,但它由兩個蒸汽螺杆膨脹機和三個濕蒸汽 ORC 模塊化發電廠(chǎng)提供(gòng)動力。

然(rán)而(ér),GDC 的蒸汽含有 3.3% 的 NCG,這是一個“巨大的百分比”,他說。如果 Sosian 使用傳統的蒸汽輪機,他們(men)需要將蒸汽膨脹至 6 bar 絕對壓力,然後每小(xiǎo)時消耗超過 30 噸的蒸汽,使用蒸汽噴射器和真空泵去除 NCG。相反,Sosian 使用蒸汽螺杆膨脹機(jī)和底部循(xún)環來處理飽和蒸汽排放,在整個過程中將蒸汽降低到大氣水平,同時消除真空係統通常消耗的寄生功率。

“與(yǔ)傳統蒸汽輪機相比,整體(tǐ)效率對於該站點來說是一(yī)個巨大的(de)改變,”湯炎博士說道。“該項目(mù)隻需要保證 33.25 兆瓦,目標是(shì) 35 兆瓦,但我們實際上發電量為 37 兆瓦。”同時,該項目不需要額外購(gòu)買10%的蒸(zhēng)汽用於蒸汽噴射器,從而減輕了GDC的負擔,他說(shuō)。

閑置地熱井的(de)解決方案(àn)

湯炎博士表示,該係統的模塊化設計(jì)也有利於加快施工速度,更重(chóng)要的是,有助於克服(fú)新冠疫情帶來的供應(yīng)鏈(liàn)和項目管理挑戰。他說,草莓视频在线无限看通常會在六到九個月的時間內組裝模塊(kuài)並在工廠環境中進行組件測試。“然後,當我們運送到現場時,通常隻需很(hěn)短的時間即可將它們(men)組裝在一起,並且您無需對電源模塊進行任何焊接(jiē),”他補充道。“有時,質量控製可能是一個挑戰,”他指出。

  他還說,Sosian Menegai 項目的成功迄今已引起人們對肯尼(ní)亞地熱產業的極(jí)大興趣。一個關鍵原因是肯尼亞有很多井,估計其中 25% 到 30% 的井可能沒有蒸汽收集係統,而蒸汽收集係統(tǒng)是集中式蒸汽渦輪機所必需的。“他們稱這些井為閑置井或廢棄(qì)井,它們就放在那裏,什麽也不做”,即(jí)使鑽探這些井的成(chéng)本很高,“但我(wǒ)們(men)的技術沒有這種限(xiàn)製,因為我們可以使用任何良好的壓力,無論它們是產(chǎn)生(shēng)鹽水還是蒸汽(qì)。”

Sonal Patel 是 POWER 的高級(jí)編(biān)輯(@sonalcpatel, @POWERmagazine


查(chá)詢(xún)關鍵詞
草莓视频在线无限看_草莓视频色版在线_草莓视频黄色版网站_草莓视频APP在线下载观看